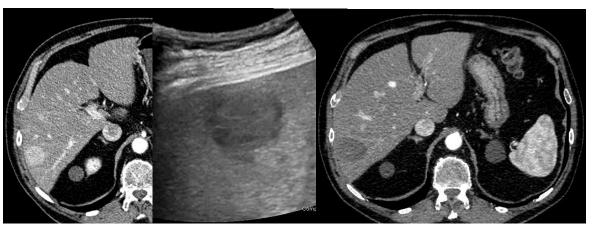

Hybrid PHC 2024 Institut Pasteur - Paris 18 - 19 March

HCC session 2: Management Interventional Radiology

Prof. Laura Crocetti, MD, PhD, EBIR Division of Interventional Radiology

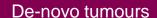


♂, 83 years, HCV related cirrhosis

Pre-treatment

1 month

3 years


MW thermal ablation: single insertion of 14G probe with HS Amica[™]

Ablation time: 6 minutes

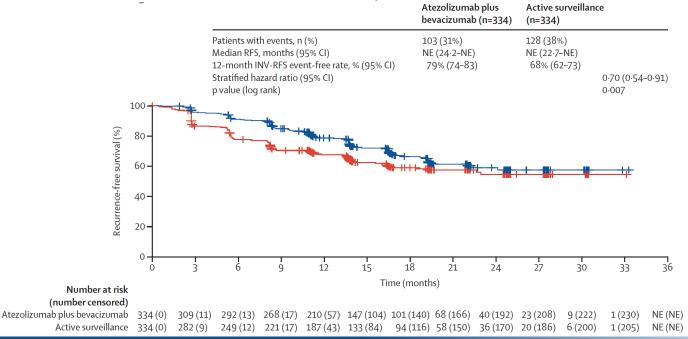
Power: 50W

Recurrence of curative treatment of very early/early stage HCC



Intrahepatic metastases

Up to **80%** of people with eHCC experience disease recurrence **within 5 years** of receiving surgery or ablation with curative intent^{1,2}


There are no approved adjuvant therapies for eHCC to address this high recurrence risk and improve longterm outcomes in the curative-intent setting

IMbrave050: adjuvant immunotherapy + VEGF inhibitor following resection or ablation

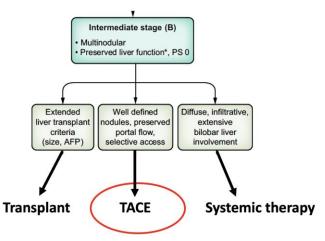
Pts at high risk of recurrence after surgery or ablation

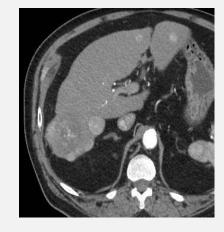
Resection: 88% in treatment arm, 87% in active surveillance arm

Recurrence after ablation

3-year post MW ablation follow-up CT

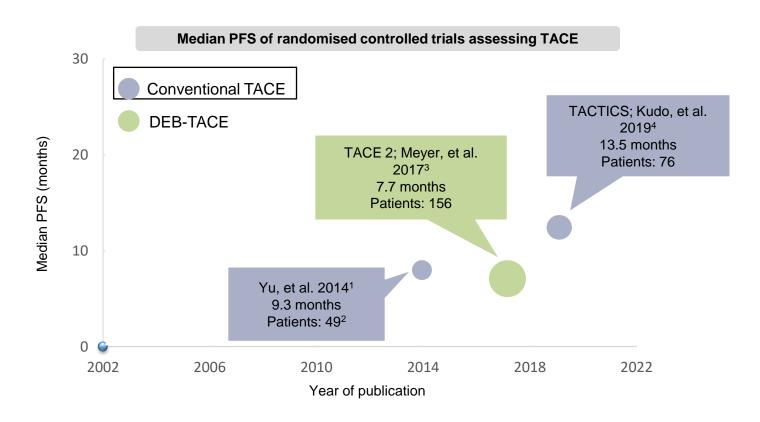
Distant recurrence




Ongoing trials in adjuvant setting after curative therapy

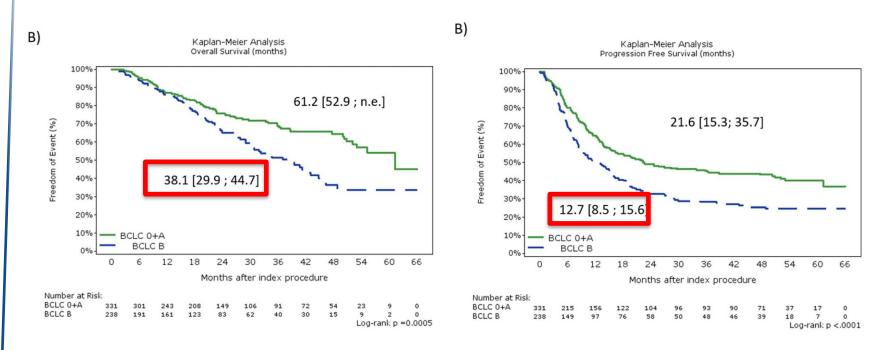
NCT number	Study phase	Investigational arm(s)	Curative therapy given	Patient enrolment, N	Status	Primary endpoint(s)
IMbrave050 NCT04102098	3	Arm A: atezolizumab + bevacizumabArm B: active surveillance	Resection or ablation	668 (actual)	Active, not recruiting	RFS (IRF)
EMERALD-2 NCT03847428	3	 Arm A: durvalumab + bevacizumab Arm B: durvalumab + bevacizumab placebo Arm C: durvalumab placebo + bevacizumab placebo 	Resection or ablation	908 (actual)	Active, not recruiting	RFS for Arm A vs Arm C
CheckMate 9DX NCT03383458	3	NivolumabPlacebo	Resection or ablation	545 (actual)	Active, not recruiting	• RFS
NCT04639180	3	Camrelizumab + rivoceranib (apatinib)Active surveillance	Resection or ablation	687 (actual)	Active, not recruiting	RFS (BICR)
PREVENT-2 NCT05910970	3	Tislelizumab + lenvatinibTislelizumab	Resection or ablation	200 (estimated)	Not yet recruiting	• RFS
KEYNOTE-937 NCT03867084	3	PembrolizumabPlacebo	Resection or ablation	950 (estimated)	Active, not recruiting	RFS (BICR*)OS
NCT02725996	2	Curative therapy + NK cellsCurative therapy	Resection or ablation	140 (estimated)	Unknown	• RFS • OS
NCT05367687	2	Camrelizumab + rivoceranib (apatinib)Camrelizumab	Resection or ablation	251 (actual)	Active, not recruiting	RFS (investigator)

Is TACE a treatment option for all intermediate-stage HCC patients?



Journal of Hepatology DOI: (10.1016/j.jhep.2021.11.018)

- Only selected patients with intermediate disease are optimal candidates for TACE
- Efficacy of TACE is affected by tumour burden
- Repeat cycles of TACE can compromise liver function


Progression free survival (PFS) after TACE

^{3.} Meyer T, et al. Lancet Gastroenterol Hepatol 2017;2:5657-575. 4. Kudo M, et al. Gut 2020;69:1492-1501.

Overall survival (OS) and progression free survival (PFS) after TACE

Stage B: 238 patients, mean number of tumors 1.4 \pm 1.6, sum of tumor diameters 69.9 \pm 36.5 mm

TACE + Immune checkpoint inhibitors (ICI): Early phase studies

The open-label, single-arm, Phase 2 IMMUTACE study investigated the safety and efficacy of TACE + nivolumab in HCC amenable to embolisation¹

Summary of clinical outcomes (median follow-up of 20 months)¹

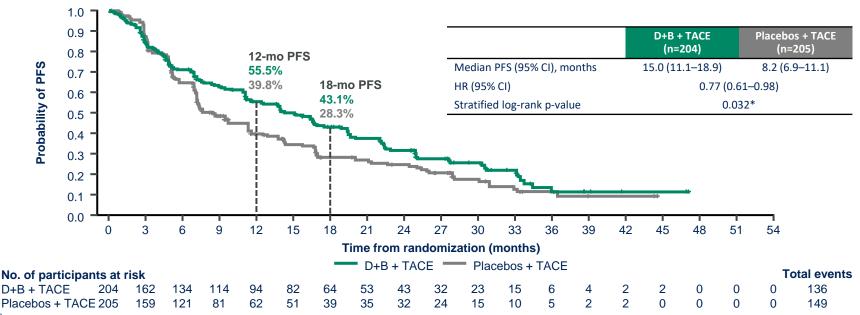
	TACE + nivolumab N=49
ORR (95% CI), %	71.4 (56.8–83.4)
Median (95% CI) PFS, months	7.2 (5.3–11.2)
Median (95% CI) time to failure of strategy, months	11.2 (7.2–13.5)
Median (95% CI) time to subsequent systemic therapy, months	24.9 (12.2–NE)
Median (95% CI) OS, months	28.3 (20.0-NE)

A pilot study evaluated the combination of tremelimumab + TACE, RFA or chemoablation in patients with advanced HCC²

Summary of efficacy with tremelimumab + TACE

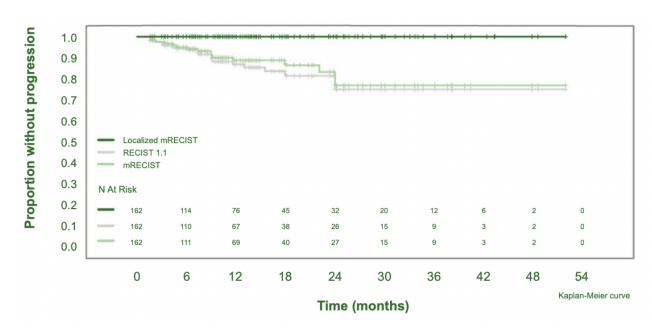
	Tremelimumab + TACE N=11
6-month PFS (95% CI), %	63.6 (29.7–84.5)
12-month PFS (95% CI), %	29.1 (5.4–59.3)
Median (95% CI) OS, months	13.6 (7.5–NE)
12-month OS (95% CI), %	80.8 (42.4–94.9)

Early-phase studies suggest TACE + ICI may be efficacious in advanced / unresectable HCC and HCC amenable to embolisation


1. Saborowski A, et al. Presented at: ASCO; 3–7 June 2022; Chicago, IL, USA. Abs 4116. 2.Duffy AG, et al. *J Hepatol* 2017;66:545–551.

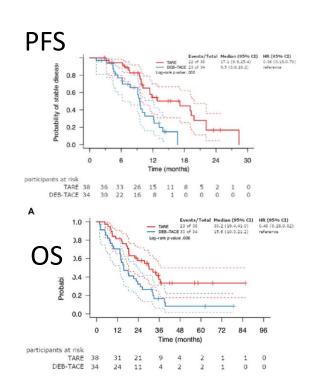
TACE/TAE + ICI: Ongoing trials

	Phase	Investigational arm(s)	Control arm	Patient enrollment (N)	Primary endpoint(s)	
EMERALD-1		Arm A: TACE + durvalumab				
NCT03778957	3	Arm B: TACE + durvalumab + bevacizumab	TACE + placebo (Arm C)	724 (actual)	PFS (Arm B vs Arm C; BICR)	
EMERALD-3	3	Arm A: TACE + STRIDE + lenvatinib	TACE (Arm C)	725 (estimated)	PFS (Arm A vs Arm C; RECIST 1.1 by BICR)	
NCT05301842	.	Arm B: TACE + STRIDE	TACE (AIIII C)			
LEAP-012	3	TACE + pembrolizumab + lenvatinib T	TACE + placebo	450 (estimated)	PFS (RECIST 1.1 by BICR)	
NCT04246177	3		TACE - placeso		OS	
TACE-3	2/3	TACE / TAE + nivolumab	TACE / TAE	522 (estimated)	OS (Phase 3)	
NCT04268888	2/3	TACE / TAE + HIVOIGHIAD	TACL / TAL		TTTP (Phase 2)	
TALENTACE NCT04712643	3	TACE + atezolizumab + bevacizumab	TACE	342 (actual)	TACE PFS (investigator assessed)	
NC104712043					OS	
DEMAND NCT04224636	2	Up-front atezolizumab + bevacizumab, then TACE	atezolizumab + bevacizumab + TACE (combined)	106 (estimated)	24-months survival rate	



EMERALD-1: PFS with durvalumab + bevacizumab + TACE versus placebo + TACE

TARE for solitary HCC: the LEGACY study



- Retrospective, multicenter, 162 pts
- Solitary HCC < 8 cm (median 2.7 cm)
- Best ORR **88.3**%
- Median DoR for confirmed response 11.8 months
- Three-year overall survival was 86.6%

Phase II RCT comparing TACE and TARE: TRACE study

	TARE	TACE	HR	Р
TTP (months)	17.1	9.5	0.36 (0.18, 0.70)	0.002
ORR treated liver (%)	94	100		
ORR liver (%)	88	87		
n. transplanted	10	4		
PFS (months)	11.8	9.1	0.40 (0.24, 0.67)	<0.001
OS (months)	30.2	15.6	0.48 (0.28, 0.82)	0.006
OS censored for LTx (months)	27.6	15.6	0.49 (0.28, 0.87)	0.01

The immunological impact of Y90 TARE

Design

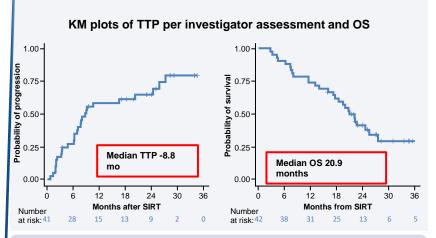
Time-of-flight mass cytometry and next generation sequencing were used to examine the immune landscapes of TILs, tumour tissues and PBMCs at various interval points prior to and following Y90-RE

Results

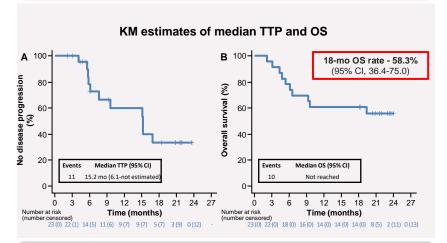
Local and systemic immune activation that corresponded to the sustained response to Y90-RE was identified

Conclusions

Potential biomarkers associated with a positive clinical response were identified and a prediction model was built to identify sustained responders prior to treatment


Model showing a series of immune responses induced by Y90-RE in TILs and PBMCs Pre Y90 PBMC: Clinical response Biomarkers for Increased Increased TNFa + and responders **APCs GB+ immune** subsets Post Y90 Treatment naïve (~3-6 mo) Control Recruitment of More Treg cells More CD8+Tim3+. CD8+ T cells NK and NKT cells Activation of T. Higher GB+ CD8+, NK and NKT cells NK and NKT cells Up-regulation of chemokine and cytokines Post Y90 (~3-6 mo)

Deep immunophenotyping and transcriptomic analysis showed significant immune activation locally both within the tumour microenvironment and in the peripheral blood of patients with HCC, who exhibited a sustained response to Y90-RE

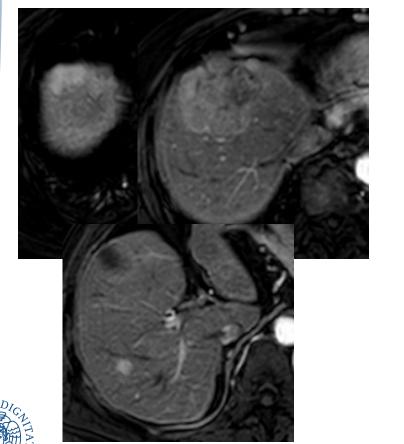

TARE + immune checkpoint inhibitors (ICI): Early phase studies

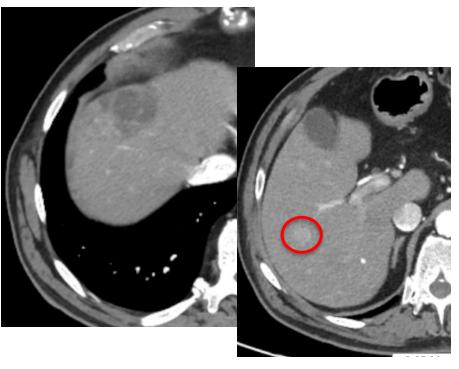
NASIR-HCC, a phase 2, single-arm study investigated the safety and efficacy of nivolumab + for the treatment of patients with HCC that are candidates for LRTs¹

AEs and SAEs grade 3–4 were observed in 19% and 26% of patients, respectively

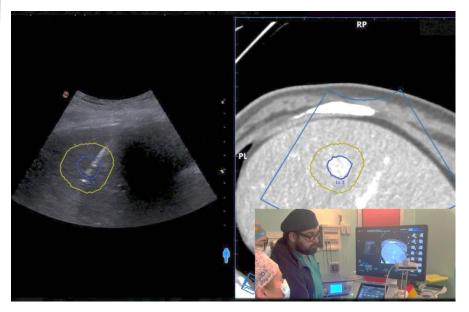
A phase 2 /3a pilot trial investigated the efficacy and safety of Y-90 RE + durvalumab for locally advanced uHCC²

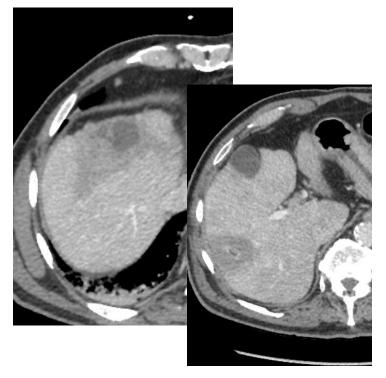
While up to 50% of patients experienced any-grade TRAEs during the study, **0%** developed any TRSAEs


In patients with HCC that are candidates for LRT, the combination of Y90-RE and immunotherapy may be effective and tolerable, warranting further evaluation in large-scale controlled trials^{1,2}


TARE and ICI ongoing clinical trials

Study	Phase	Intervention arms	Patient enrollment (N)	Primary outcomes
EMERALD-Y90 NCT06040099	2 •	TARE+ durvalumab +bevacizumab	100 (estimated)	PFS
IMMUWIN NCT04522544	2 •	Y-90 SIRT + tremelimumab + durvalumab DEB-TACE + tremelimumab + durvalumab	55 (estimated)	ORR at 6 months
ROWAN NCT05063565	2 •	TARE + tremelimumab + durvalumab	100 (estimated)	ORR
ZUGSPITZE 2020-003925-42	2 .	Personalised-SIRT + tremelimumab + durvalumab Standard-dose SIRT + tremelimumab + durvalumab Immunotherapy followed by on-demand SIRT	84 (planned)	ORR


June 2023, ♂, 78 years, biopsy-proven HCC, no chronic liver disease



60 days after TARE + 5 months after Atezo-Bev

June 2023, 3, 78 years, biopsy-proven HCC, no chronic liver disease

US/CT fusion-guided MW ablation

Immediate post-procedural CT

Comparing Real World, Personalized, MDT Recommendations with BCLC Algorithm: 321-Patient Analysis

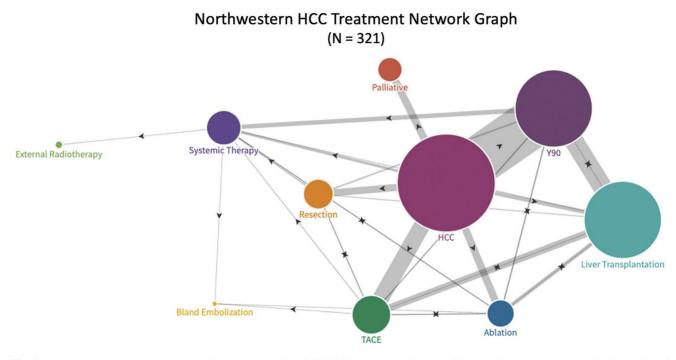
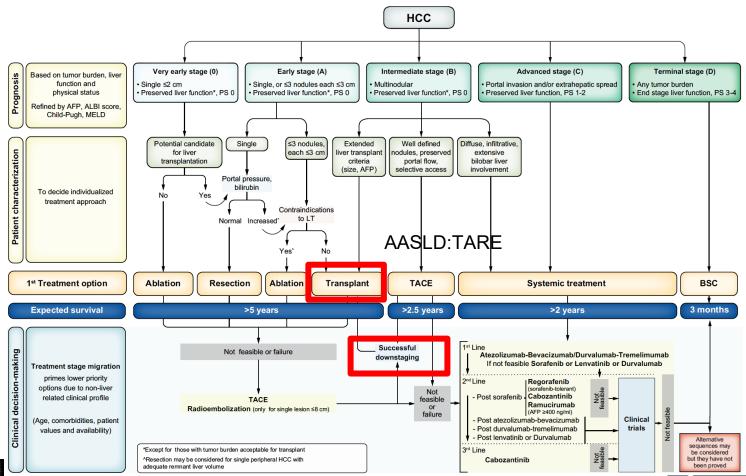
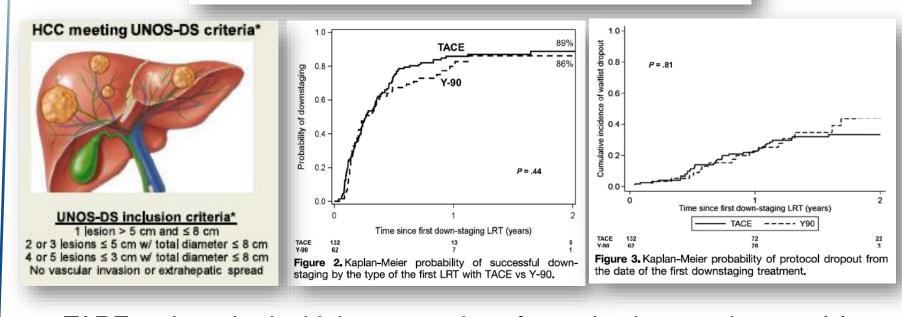
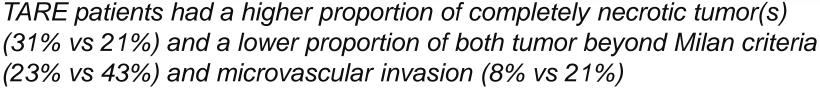



Fig. 5 Dynamic network graph demonstrating the interaction of all HCC treatments. The size of the node is commensurate with the number of patients (HCC N = 321). The thickness of the link is commensurate with the frequency of the interaction

Journal of Hepatology DOI: (10.1016/j.jhep.2021.11.018)

European Society of Organ Transplantation (ESOT) Consensus Report on Downstaging, Bridging and Immunotherapy in Liver Transplantation for Hepatocellular Carcinoma


Marco Petrus Adrianus Wilhelmus Claasen^{1,2}, Dimitri Sneiders^{1†}, Yannick Sebastiaan Rakké^{1†}, René Adam³, Sherrie Bhoori⁴, Umberto Cillo⁵, Constantino Fondevila⁶, Maria Reig⁷, Gonzalo Sapisochin², Parissa Tabrizian⁸ and Christian Toso⁹* on behalf of the ESOT Guidelines Taskforce achieving a successful downstaging to pre-defined transplantable criteria should be considered for liver transplantation as the benefit in terms of both recurrence-free survival and overall survival of this approach is significantly higher than any other non transplant strategy


Recommendation 1.1: All HCC patients

1. Should all eligible patients be transplanted after successful downstaging?

Quality of Evidence: High Strenght of Recommendation: Strong for

Downstaging Outcomes for Hepatocellular Carcinoma: Results From the Multicenter Evaluation of Reduction in Tumor Size before Liver Transplantation (MERITS-LT) Consortium

IR for management of HCC

Ablation is an established effective treatment for very early/early stage HCC

The risk of recurrence following surgery or ablation may be reduced by the addition of adjuvant immunotherapy; specifities of ablation should be investigated

Initial clinical experience confirms the feasibility and safety of combined embolisation (TACE / TARE) + immunotherapy regimens

Phase 3 clinical trials results are promising and support the evolution of immunotherapy-based combination from unresectable advanced HCC intermediate stage HCC

The results of further trials are highly anticipated

https://www.ecio.org/